O.P.Co	de:	20CE1017	
---------------	-----	----------	--

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

R20

H.T.No.

M.Tech I Year II Semester Regular & Supplementary Examinations July-2025 DESIGN OF ADVANCED CONCRETE STRUCTURES

(Structural Engineering)

Note : 1. Student must answer one question from each unit 2. IS 456-2000 code book is allowed in the exam hall

T	im	e: 3 Hours	Max	Mar	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			13. 00
		UNIT-I			
1	2	Advantage and disadvantages of moment redistribution	CO1	L1	6M
	l	Explain the conditions for moment redistribution	CO1	L2	6M
2		OR			
2		A beam AB of 6 m span and fixed at the ends, carries an UDL of 40	CO1	L3	12M
		KN/m at collapse. Draw maximum bending moment diagram as per IS code recommendations for redistribution of moments.			
3		Draw the detailing of deep beam with neat sketches as per IS 456 – 2000	000		
5		for different loading conditions.	CO2	L2	12M
		OR ·			
4		A Simply supported beam of 250 mm wide and 1500 mm overall depth	CO2	L3	12M
		& 2300 mm clear span is simply supported on 200 mm wide support on	001	10	
		either side it carries UDL of 200KN/m inclusive of its self weight.			
		Design the beam using M20 concrete and Fe415 Grade.			
_		UNIT-III			
5		A simply supported one way ribbed slab of 5 m span is to be used for 3 $K = 10^{-10} M$	CO3	L3	12M
		KN/m2 live load. Design the slab using M20 grade concrete and HYSD bars of grade Fe 415.			
		OR			
-6		Explain the Analysis and Design procedure for ribbed Slabs.	CO3	L2	12M
			005		12111
7		Design the interior panel of the flat slab floor system for a warehouse	CO 4	L3	12M
	$24m \times 24m$ divided into panels of $6m \times 6m$. Live load = $5kN/m^2$,		0.04	LJ	12111
		materials M20 and Fe415 HYSD bars, Column size = $400 \text{mm} \emptyset$. Sketch			
		the reinforcement details in an interior panel of the flat slab.			
0		OR			
8	a	Write in detail about grid floor slab? With functions, characteristics and	CO4	L1	6M
	h	failure of grid slab? write the operational design procedure of the grid floor slab?	GO (<i>(</i>)
	U	UNIT-V	CO4	L1	6M
9	я	Explain about the slenderness of the plain-concrete wall as per IS 456-	005	T O	0.5
	**	2000.	CO5	L2	6M
	b	Write about the eccentricities of vertical loads at right angles to wall.	CO5	L1	6M
		OR	205	1.1	U1#L
10		Write in detail about general dimensions of rectangular shear walls,	CO5	L1	12M
		vertical and horizontal reinforcements, strength Requirements shear			
		wall.			

*** END ***